16,534 research outputs found

    Equation of motion for multiqubit entanglement in multiple independent noisy channels

    Full text link
    We investigate the possibility and conditions to factorize the entanglement evolution of a multiqubit system passing through multi-sided noisy channels. By means of a lower bound of concurrence (LBC) as entanglement measure, we derive an explicit formula of LBC evolution of the N-qubit generalized Greenberger-Horne-Zeilinger (GGHZ) state under some typical noisy channels, based on which two kinds of factorizing conditions for the LBC evolution are presented. In this case, the time-dependent LBC can be determined by a product of initial LBC of the system and the LBC evolution of a maximally entangled GGHZ state under the same multi-sided noisy channels. We analyze the realistic situations where these two kinds of factorizing conditions can be satisfied. In addition, we also discuss the dependence of entanglement robustness on the number of the qubits and that of the noisy channels.Comment: 14 page

    Atomic entanglement sudden death in a strongly driven cavity QED system

    Full text link
    We study the entanglement dynamics of strongly driven atoms off-resonantly coupled with cavity fields. We consider conditions characterized not only by the atom-field coupling but also by the atom-field detuning. By studying two different models within the framework of cavity QED, we show that the so-called atomic entanglement sudden death (ESD) always occurs if the atom-field coupling lager than the atom-field detuning, and is independent of the type of initial atomic state

    Quantum Speed Limit for Perfect State Transfer in One Dimension

    Full text link
    The basic idea of spin chain engineering for perfect quantum state transfer (QST) is to find a set of coupling constants in the Hamiltonian, such that a particular state initially encoded on one site will evolve freely to the opposite site without any dynamical controls. The minimal possible evolution time represents a speed limit for QST. We prove that the optimal solution is the one simulating the precession of a spin in a static magnetic field. We also argue that, at least for solid-state systems where interactions are local, it is more realistic to characterize the computation power by the couplings than the initial energy.Comment: 5 pages, no figure; improved versio

    Actin Sequences and Associated Elements in the Mouse Genome

    Get PDF
    This work describes the structural analysis of four mouse genomic clones which had previously been shown by electron microscopic heteroduplex analysis to contain actin-like genes, each with a single interruption. The objective of this work was to determine the nature of these interruptions

    A method to find quantum noiseless subsystems

    Full text link
    We develop a structure theory for decoherence-free subspaces and noiseless subsystems that applies to arbitrary (not necessarily unital) quantum operations. The theory can be alternatively phrased in terms of the superoperator perspective, or the algebraic noise commutant formalism. As an application, we propose a method for finding all such subspaces and subsystems for arbitrary quantum operations. We suggest that this work brings the fundamental passive technique for error correction in quantum computing an important step closer to practical realization.Comment: 5 pages, to appear in Physical Review Letter
    • …
    corecore